
Abstract Parsing for Two-staged
Languages with Concatenation ∗

Soonho Kong Wontae Choi Kwangkeun Yi
Seoul National University

{soon,wtchoi,kwang}@ropas.snu.ac.kr

Abstract
This article, based on Doh, Kim, and Schmidt’s “abstract parsing”
technique, presents an abstract interpretation for statically check-
ing the syntax of generated code in two-staged programs. Ab-
stract parsing is a static analysis technique for checking the syntax
of generated strings. We adopt this technique for two-staged pro-
gramming languages and formulate it in the abstract interpretation
framework. We parameterize our analysis with the abstract domain
so that one can choose the abstract domain as long as it satisfies the
condition we provide. We also present an instance of the abstract
domain, namely an abstract parse stack and its widening with k-
cutting.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Languages, Theory

Keywords Multi-staged languages, Program analysis, Abstract
Interpretation, Parsing

1. Introduction
1.1 Motivation
For programs that generate and run programs during execution,
statically checking the program safety is a challenge. We need to
check the safety of generated programs as well as that of the im-
mediate target program. Checking the safety must include checking
the programs resulting from evaluating programs.

The semantic safety of such multi-staged programs can be
achieved in part by a static type system as reported in [4, 15, 18,
25]. A sound static type system assures that program as data as well
as the immediate target program will not have a type error during
their executions.

In such a static type system, syntactic errors in the generated
code are not an issue. The considered target language is such

∗ This work was supported by the Brain Korea 21 Project, School of Electri-
cal Engineering and Computer Science, Seoul National University in 2009
and the Engineering Research Center of Excellence Program of Korea Min-
istry of Education, Science and Technology(MEST) / Korea Science and
Engineering Foundation(KOSEF). (R11-2008-007-01002-0).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’09 October 4–5, 2009, Denver, Colorado, USA.
Copyright c© 2009 ACM 978-1-60558-494-2/09/10. . . $10.00

that primitive code fragments and their compositions are always
syntactically correct.

In reality though (as in most web-programming or scripting
languages such as PHP, Python, Ruby, Perl, and Javascript), if code
is represented as a string and code composition is achieved by
string concatenation, syntactically checking the code string value
is the foremost issue in the static safety check of such multi-staged
programs.

Recently, Doh, Kim, and Schmidt reported a powerful technique
called “abstract parsing” [16] that statically analyzes the string
values from programs. In abstract parsing, to statically check the
generated string is to simulate the parsing actions for possible string
values.

In this paper, we report a formalization of abstract parsing in
the abstract interpretation framework [10, 11, 12] for two-staged
programming languages. Our contribution is to lay a basis to ex-
pose the power and, if any, limitation of abstract parsing as static
analysis for multi-staged languages.

1.2 Abstract Parsing
We here review the abstract parsing idea of [16]. Suppose we want
to check that strings generated by the program in Figure 1 conform
to the following grammar.

S → a | [S]

Abstract parsing derives data-flow equations from the program as
in Figure 1. The equation variables are treated as functions that
map an input parse state to an output parse stack. They are solved
using the goto controller of an LR parser for the grammar, shown
in Figure 2.

Suppose we want to check that X1 will accept strings of the
target grammar. The analysis starts with X1(s0) where s0 is an
initial parse state. To solve

X1(s0) = (L.X0)(s0),

the analysis first computes L(s0). With the state s0 and the token
“[” the goto controller returns goto(s0, [) = s1. Having L(s0) =
s1, the analysis computes X0(s1). After consuming the token “a”
and moving to the parse state s2, parser reduces with S → a and
moves the parse state back to s1. Then goto(s1,S) = s3 yields

x = ‘a’ X0 = a
l = ‘[’ L = [
r = ‘]’ R =]
x = l . x X1 = L.X0

Figure 1. Example program (left) and its data-flow equations
(right)

→ !S

S → ![S]

S → !a

s0 s1

s2

s3

s5

S → [! S]

S → ![S]

S → !a

s4

S → [S]!

S → [S !]

→ S ! S → a!

S

S[

]
a

[

a

Figure 2. Goto controller of the LR(0) parser for S → a | [S].
(from [16])

X0(s1) = s3. Therefore we have

X1(s0) = s3s1

and the analysis concludes that X1 has a string unacceptable for the
grammar because state s3 is not the accept state.

1.3 Contribution
• We formulate this abstract parsing idea in the abstract interpre-

tation framework for two-staged languages with concatenation.
By this formulation we can see what approximations are in-
volved in abstract parsing and what limitations (as a static anal-
ysis) to expect from the abstract parsing technique.
Based on the abstract interpretation framework, we present a
concise and elegant perspective on the core idea of abstract
parsing. In the original work [16], code is abstracted into the
parse stack and the special operator “∗” is needed to handle
string concatenation. In our formulation, however, we abstract
code into a function which maps an input parse stack to an
output parse stack. Code concatenation is handled simply by
function composition.

• We generalize the abstract-parsing abstract interpretation, as
usual, by parameterizing the abstract domain of parse stacks.
This generalization separates the core idea and its implemen-
tation of abstract parsing. By choosing an appropriate abstract
domain, one can control the analysis precision and cost.

1.4 Organization
Section 2 introduces the syntax and semantics of our target two-
staged language with concatenation. Section 3 presents concrete
parsing semantics with LR(k) parsing. Section 4 presents abstract
parsing semantics and its parameterized framework. Section 5
presents a concrete example of the abstract domain which can be
used to instantiate the framework. Section 6 reviews related work
and Section 7 concludes.

2. Two-staged Language
We consider a two-staged language with concatenation. The lan-
guage is an imaginary, first-order language whose only value is
code. The language is minimal, so as not to distract our focus
on formalizing the abstract parsing method. For example, loops
and conditional jumps are without the condition expression, for
which abstract interpretation anyway considers all iterations and
all branches.

2.1 Syntax and Semantics
A program is an expression e:

e ∈ Exp ::= x | let x e1 e2 | or e1 e2 | re x e1 e2 e3 | ‘f

σ ∈ Env = Var → Code

v ∈ Code = Token sequence

e ∈ Exp

f ∈ Frag

σ `0 e⇒ v

σ `0 x⇒ σ(x) (variable)

σ `0 e1 ⇒ v σ[x 7→ v] `0 e2 ⇒ v′

σ `0
let x e1 e2 ⇒ v′

(let binding)

σ `0 e1 ⇒ v

σ `0
or e1 e2 ⇒ v

σ `0 e2 ⇒ v

σ `0
or e1 e2 ⇒ v

(branch)

σ `0 e1 ⇒ v σ[x 7→ v] `0 loop x e2 e3 ⇒ v′

σ `0
re x e1 e2 e3 ⇒ v′

(loop)

σ `0 e2 ⇒ v σ[x 7→ v] `0 loop x e2 e3 ⇒ v′

σ `0 loop x e2 e3 ⇒ v′

σ `0 e3 ⇒ v

σ `0 loop x e2 e3 ⇒ v

σ `1 f ⇒ v

σ `0
‘f ⇒ v

(back quote)

σ `1 f ⇒ v

σ `1 x⇒ x σ `1
let⇒ let

(token)

σ `1
or⇒ or σ `1

re⇒ re

σ `1
(⇒ (σ `1

)⇒)

σ `1 f1 ⇒ v1 σ `1 f2 ⇒ v2

σ `1 f1.f2 ⇒ v1v2

(concatenation)

σ `0 e⇒ v

σ `1
,e⇒ v

(comma)

Figure 3. Operational semantics of the target language.

An expression can contain code fragments f :

f ∈ Frag ::= x | let | or | re | (|) | f1.f2 | ,e
Operational semantics of the target language is shown in Figure 3.
Expression ore1e2 is for branches. It could be the value of e1 or the
value of e2. Expression rexe1 e2 e3 is for loops. Variable x has the
value of e1 as its initial value. Loop body e2 is iterated ≥ 0 times.
The result of each iteration e2 will be bound to x in e2 for next
iteration or in e3 for the result of the loop. Backquote form ‘f is for
code fragment f . We construct the fragment by using the following
tokens: variables, let, or, re, (, and). Compound fragment f1.f2

concatenates two code fragments f1 and f2. Comma fragment ,e
first evaluates e then substitutes its result code value for itself. Note

that the meaning of ‘f and ,e is the same as in LISP’s quasi-
quotation system.

2.2 Example Program
In our language, it is possible to write a program generating
mal-formed code. For instance, the following program gener-
ates “a b” (after zero iterations), “or a b” (after one iteration),
“or or a b” (after two iterations), and so on.

re x ‘a (‘or . ,x) (‘,x . b)

Only “or a b” is correct and the rest of them have a syntax error.
However the following program generates “a” (after zero itera-

tions), “(or a b)” (after one iteration), “(or (or a b) b)” (af-
ter two iterations), and so on,

re x ‘a ‘(or . ,x . b) x

and all of them are syntactically correct.

2.3 Collecting Semantics and its Abstraction Plan
The collecting semantics of the language is defined as follows. This
semantics is the natural set extension for the sets of environments.
The fix operator is the usual least fixpoint operator to capture all
the iteration results from loops.

Code = Token sequence

σ ∈ Env = Var → Code

[[e]]0 ∈ 2Env → 2Code

[[f]]1 ∈ 2Env → 2Code

[[x]]0Σ = {σ(x) | σ ∈ Σ}
[[let x e1 e2]]

0Σ =
[

σ∈Σ

[

c∈[[e1]]0{σ}
[[e2]]

0{σ[x 7→ c]}

[[or e1 e2]]
0Σ = [[e1]]

0Σ ∪ [[e2]]
0Σ

[[re x e1 e2 e3]]
0Σ =

[
σ∈Σ

[[e3]]
0{σ[x 7→ c] | c ∈

fixλC.[[e1]]
0{σ} ∪ [[e2]]

0{σ[x 7→ c′] | c′ ∈ C}}
[[‘f]]0Σ = [[f]]1Σ

[[x]]1Σ = {x}
[[let]]1Σ = {let}
[[or]]1Σ = {or}
[[re]]1Σ = {re}
[[(]]1Σ = {(}
[[)]]1Σ = {)}

[[f1.f2]]
1Σ =

[
σ∈Σ

{xy | x ∈ [[f1]]
1{σ} ∧ y ∈ [[f2]]

1{σ}}

[[,e]]1Σ = [[e]]0Σ

From the collecting semantics above, we derive a series of ab-
stract semantics. From the collecting semantics’ semantic domain

2Var→Code → 2Code ,

the powerset environment 2Var→Code is abstracted into Var →
2Code , i.e., the semantic domain becomes

(Var → 2Code)→ 2Code .

Now the abstraction of 2Code becomes the essential part of the ab-
stract interpretation design. Before we abstract 2Code , we formu-

late a code fragment as a function that maps a parse stack to a parse
stack. We call this formulation “concrete parsing” (Section 3). That
is, 2Code becomes 2P→P (where P is the set of parse stacks). Then
we abstract 2P→P into 2P → 2P (Section 4). Lastly, we present
an abstract-parsing abstract interpretation that parameterizes an ab-
stract domain D] of 2P .

In summary, this series of abstraction steps for the value domain
in the semantics is:

2
Code

−→

2
P
→ 2

P
2

P→P
D

!
→ D

!

−→ −→
Collecting

Semantics

Concrete

Parsing

Semantics

First Step

Abstraction

Semantics

Parameterized

Abstract

Parsing

Semantics

3. Concrete Parsing
3.1 Analyze-and-parse Strategy
We take the analyze-and-parse strategy in abstract parsing [16] into
our semantics. The semantics simulates the parsing operations. It
is compared to the analyze-then-parse strategy which analyzes the
program, calculates approximated set of code, then parses them.

Analyze-and-parse strategy is more efficient than analyze-then-
parse strategy as reported in [16]. In analyze-then-parse strategy,
code is abstracted into a grammar. Then it checks whether the
abstracted grammar is included in the reference grammar or not.
However, grammar inclusion check is more expensive than parsing.
In addition, analyze-and-parse directly computes parsing informa-
tion without approximating the code into the grammar.

We formulate the analyze-and-parse strategy in our semantics.
The parsing domain is constructed as an abstract domain where
code is abstracted into parsing information. We abstract the parsing
domain into an abstract parsing domain to control the precision and
cost of analysis and to make sure the analysis terminates.

Since our semantics uses an LR(k) parser as a component, it is
essential to review its key concepts.

3.2 LR Parsing
The LR(k) parsing technique [1] is an efficient way to determine
whether the string conforms to the given grammar or not. An LR
parser is a state machine which consists of a parse stack, an action
table, and a goto table. The set of parse states Σ = {s1, s2, . . . , sn}
is defined by parser generator from the given grammar. Parse stack
p ∈ P = Σ+ is a sequence of parse states which it has been in.
Two special parse stacks pinit and pacc are defined. Parsing starts
with the initial parse stack pinit . Successful parsing should stop at
the accept parse stack pacc . Otherwise it indicates that the parsed
string does not conform to the given grammar. String representation
“stop . . . sbot” denotes a parse stack whose top state is stop and
bottom state is sbot. The action table decides which operation
(shift/reduce) to perform from the current state and current token.
The goto table determines the state to push after we pop states in
the reduce operation.

The process of parsing is a composition of the atomic func-
tion parse action : P → Token → P which is described in
Algorithm 1. It returns the parse stack from the given parse stack p
and input token t.

The parsing process parse : P → Token sequence → P is a
composition of the parse action .

parse(p, t1 . . . tn)

= parse action(. . . (parse action(p, t1)), . . . , tn)

A parser gets the input code c and returns the parse stack parse(pinit , c).

Algorithm 1 parse action algorithm
1: procedure parse action(p, t)
2: stop ← the state on top of stack p
3: if ACTION [stop, t] = shift s then
4: push s onto the stack p
5: return p
6: else if ACTION [stop, t] = reduce A→ β then
7: pop |β| symbol off the stack p
8: stop ← the state on top of stack p
9: push GOTO [stop, A] onto the stack p

10: return parse action(p, t)
11: end if
12: end procedure

3.3 Concrete Parsing Domain : Value VP = 2P→P

We define the concrete parsing domain. It is “concrete” in that we
use the same parse stack defined in LR(k) parsing.

Because LR(k) parsing computes a parse stack, it is tempting to
choose the parse stack parse(pinit , c) as an abstraction of the code
c. However this setting causes a problem when we handle the con-
catenation x.y. Let px = parse(pinit , x) and py = parse(pinit , y)
be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −→←−α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}
γ = λF.

[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x 7→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x 7→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x 7→ k])])

[[‘f]]0P σ = [[f]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[,e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP = 2P→P

to VP̂ = 2P → 2P by establishing the Galois connection
VP −→←−α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[
{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x 7→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = λP.[[e1]]

0
P̂ σP ∪ [[e2]]

0
P̂ σP

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x 7→

fix λk.λP.[[e1]]
0
P̂ σP ∪ [[e2]]

0
P̂ (σ[x 7→ k])P])

[[‘f]]0P̂ σ = [[f]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[,e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.
The abstract semantic function [[·]]0

P̂
is used to check whether

generated code conforms to the grammar. For the given program e,
we compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare S
with {pacc}, the accept parse state. If they are equal, we conclude
that the generated code in the given program conforms to the
grammar. Otherwise, the analysis concludes that the program may
generate syntactically incorrect code.

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting 2P (the powerset domain of parse stacks) into

a particular domain, we provide conditions which the abstract do-
main for 2P should satisfy. Then we define the semantic function
on the abstract parsing domain.

Definition 1 (Abstract Parsing Domain). V] = D] → D] is
an abstract parsing domain if an abstract domain D] satisfies the
following conditions [10, 11, 12].

1. 〈D],v,t,⊥D]〉 is a CPO (Complete Partial Order).
2. Powerset domain of concrete parse stack 2P and its abstract

domain D]are Galois connected via α2P→D] and γD]→2P .
3. Parse action] : D] → Token → D] is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D](Parse action(P, t)) v Parse action](α2P→D](P), t)

The partial order vV] and join operator tV] are defined point-
wisely.

Definition 2. Semantic function [[·]]D] on the abstract parsing
domain V] is defined as follows.

σ ∈ EnvD] = Var → V]

[[e]]0D] ∈ EnvD] → V]

[[f]]1D] ∈ EnvD] → V]

[[x]]0D]σ = σ(x)

[[let x e1 e2]]
0
D]σ = [[e2]]

0
D](σ[x 7→ [[e1]]

0
D]σ])

[[or e1 e2]]
0
D]σ = [[e1]]

0
D]σ t [[e2]]

0
D]σ

[[re x e1 e2 e3]]
0
D]σ = [[e3]]

0
D](σ[x 7→

fix λk.[[e1]]
0
D]σ t [[e2]]

0
D](σ[x 7→ k])])

[[‘f]]0D]σ = [[f]]1D]σ

[[t]]1D]σ = λD.Parse action](D, t)

[[f1.f2]]
1
D]σ = [[f2]]

1
D]σ ◦ [[f1]]

1
D]σ

[[,e]]1D]σ = [[e]]0D]σ

Theorem 1 shows that [[·]]D] is a sound approximation of [[·]]P̂ .

Theorem 1. Semantic function [[·]]D] on the abstract parsing do-
main V] is a sound approximation of [[·]]P̂ . That is, we have

∀e ∈ Exp.∀σ ∈ Env P̂ .

αV
P̂
→V]([[e]]P̂ σ) v [[e]]D](αEnv

P̂
→Env

D] (σ))

where

αV
P̂
→V] = λF.λD.α2P→D](F (γD]→2P (D)))

αEnv
P̂
→Env

D] = λσ.λx.αV
P̂
→V](σ(x)).

Proof. By structural induction on e with the conditions that the
abstract parsing domain D] should satisfy.

5. Instantiation : Powerset Domain of Abstract
Parse Stack P̂ with k-cutting

In this section, we introduce an instance of an abstract domain D],
which is D̂, a powerset domain of abstract parse stack P̂ and its
widening with k-cutting. Thus the abstract parsing domain is

V̂ = D̂ → D̂.

First, we define abstract parse stack P̂ which is an abstraction
of concrete parse stack P . The abstract domain D̂ is constructed

with abstract parse stack P̂ . By establishing the Galois connection
between 2P and D̂ and defining Parsde action , we show that D̂
is an instance of D]. Finally, a widening operator is defined using
k-cutting to guarantee the termination of analysis.

5.1 Abstract Parse Stack P̂

Cut parse stack P̄ is introduced to represent a parse stack which
has been cut and only maintains top n states. Special state ‘–’ 6∈ Σ
at the bottom of cut parse stack p̄ indicates that it has been cut.

P̄ = {p · – | p ∈ Σ∗}
Abstract parse stack P̂ is defined as a union of concrete parse stack
P and cut parse stack P̄ .

P̂ = P ∪ P̄

Given an abstract parse stack ρ, the function prefix : P̂ → Σ∗

yields the longest prefix of ρ which does not contain special state ‘–’.

prefix (ρ) =

8
><
>:

ρ if ρ ∈ P

s1 . . . sn if ρ = s1 . . . sn–
ε (empty string) ρ = –

Then we define partial order v on P̂ as follows.

ρ1 vP̂ ρ2
def
= prefix (ρ1) starts with prefix (ρ2) ∧ ρ2 ∈ P̄

5.2 Abstract Domain : D̂

Abstract domain D̂ with its partial order v and join t is defined as
follows.

D̂ = {norm(d̂) | d̂ ∈ 2P̂ }
d̂1 v d̂2

def
= ∀ρ1 ∈ d̂1.∃ρ2 ∈ d̂2.ρ1 vP̂ ρ2

d̂1 t d̂2
def
= norm(d̂1 ∪ d̂2)

Normalization function norm is defined by

norm(d̂) = {ρ ∈ d̂ | ∀ρ′ ∈ d̂.ρ 6@P̂ ρ′}
to ensure that elements in norm(d̂) are the maximal elements of d̂.
It is necessary to eliminate non-maximal elements for binary rela-
tion v to be anti-symmetric and to be a partial order. For instance,
{–, s1s0–} contains non-maximal element {s1s0–} since we have
s1s0– v –. If we allow {s1s0–, –} in D̂ without normalizing it
into {–}, we have

({s1s0–, –} v {–}) ∧ ({–} v {s1s0–, –})
6⇒ {s1s0–, –} = {–}.

Then partial order v on D̂ becomes preorder since v is not anti-
symmetric anymore.

5.3 Abstract Domain D̂ as an Instance of D]

Abstract domain D̂ is an instance of D]. To verify this, we need to
show that D̂ satisfies the conditions in Definition 1.

1. 〈D̂,v,t, φ〉 is a CPO by definition of D̂.

2. To establish a Galois connection between 2P and D̂, we first
define the function expand : P̂ → 2P as follows.

expand(ρ) =

 {ρ} if ρ ∈ P

{prefix (ρ) · p | p ∈ P} if ρ ∈ P̄

It expands an abstract parse stack ρ to all the concrete parse
stacks which ρ can represent. For instance, expand(s1–) =
{s1s0, s1s2, . . . }. Note that we have ∀p ∈ expand(ρ).p vP̂ ρ
and therefore we get expand(ρ) vD̂ {ρ}.

The function Expand : D̂ → 2P is also defined as the natural
set extension of expand function by

Expand(d̂) =
[

ρ∈d̂

expand(ρ).

From the property of expand , it is clear that Expand(d̂) vD̂ d̂.
Using the Expand function, we define the Galois connection
2P −→←−α

γ
D̂ where

α = id

γ = λd̂.Expand(d̂)

Proof. To prove α and γ constitute a Galois connection, it is
sufficient to show that the following properties hold.

(a) Trivially, α = id is monotone.

(b) Monotonicity of γ is immediate from the monotonicity of
expand .

(c) We show that ∀d̂ ∈ D̂.α ◦ γ(d̂) v d̂.

α ◦ γ(d̂) = γ(d̂)

= Expand(d̂)

v d̂

(d) We show that ∀P ∈ 2P .P ⊆ γ ◦ α(P).

γ ◦ α(P) = γ(P)

= Expand(P)

=
[

p∈P

expand(p)

=
[

p∈P

p

= P

3. We first define parsde action : P̂ → Token → P̂ as in Algo-
rithm 2. It is a modified version of the parse action algorithm.
The only modifications are adding lines 2 – 4 and lines 12 –
14 to handle p̄ ∈ P̄ because the action and goto tables do not
have an entry for the special state ‘–’. Note that ∀p ∈ P.∀t ∈
Token.parse action(p, t) = parsde action(p, t).

Parsde action : D̂ → Token → D̂ is defined as the natural
set extension of parsde action as follows.

Parsde action = λd̂.λt.{parsde action(ρ, t) | ρ ∈ d̂}
Parsde action is a sound approximation of Parse action .

Proof. For all P ∈ 2P and t ∈ Token , we have

α2P→D̂(Parse action(P, t)) = Parse action(P, t)

= {parse action(p, t) | p ∈ P}
= {parsde action(p, t) | p ∈ P}
= Parsde action(P, t)

= Parsde action(α2P→D̂(P), t).

Algorithm 2 parsde action algorithm
1: procedure parsde action(ρ, t)
2: if ρ = – then
3: return ρ
4: end if
5: stop ← the state on top of stack ρ
6: if ACTION [stop, t] = shift s then
7: push s onto the stack ρ
8: return ρ
9: else if ACTION [stop, t] = reduce A→ β then

10: pop |β| symbol off the stack ρ
11: stop ← the state on top of stack ρ
12: if stop = – then
13: return ρ
14: end if
15: push GOTO [stop, A] onto the stack ρ
16: return parsde action(ρ, t)
17: end if
18: end procedure

5.4 Widening Operator on D̂

The termination of the analysis parameterized with D̂ is not guar-
anteed because D̂ has infinite height. Instead of limiting the height
of the domain, we use the widening method to achieve termination.

We define an operator
`

D̂ : D̂ × D̂ → D̂ such that

A
`

D̂ B = {norm(cutk(ρ)) | ρ ∈ A ∪B}
where cutk is defined by

cutk(ρ) =

ρ if |ρ| ≤ k

s1 . . . sk−1– if ρ = s1 . . . sk−1sk . . . sn.

Theorem 2 shows that
`

D̂ is a widening operator on D̂.

Theorem 2.
`

D̂ : D̂ × D̂ → D̂ is a widening operator.

Proof. We have to check if
`

D̂ operator satisfies the widening
conditions [10, 11, 12]:

(i) ∀x, y ∈ D̂.(x v x
`

D̂ y) ∧ (y v x
`

D̂ y).
(ii) for all increasing chains x0 v x1 . . . , the increasing chain

defined by y0 = x0, . . . , yi+1 = yi

`
D̂ xi+1, . . . is not

strictly increasing.

To prove (i), we observe that ρ vP̂ cutk(ρ) by definition of vP̂
and cutk. Using this we get

x = {ρ | ρ ∈ x}
v {cutk(p) | p ∈ x}
v {cutk(p) | p ∈ x ∪ y}
= x

`
D̂y.

Proof for y v x
`

D̂ y is analogous.
To prove (ii), we observe that the range of

`
D̂ operator is the

finite set P̂ ′ = {ρ ∈ P̂ | |ρ| ≤ k}. For all i ≥ 1, we have
yi ∈ P̂ ′. Therefore the increasing chain y0, . . . , yn, . . . is not
strictly increasing.

Using the widening operator
`

D̂ , we define a widening operator
for V̂ = D̂ → D̂, such that

f
`

V̂ g = λd̂.

(
f(d̂)

`
D̂ g(d̂) if ∀ρ ∈ d̂.|ρ| ≤ l

{–} otherwise.

where l is a constant to bound the set of meaningful entries finitely
fixed in the resulting function. For those finite meaningful entries,
we widen their images using the widening

`
D̂ . This

`
V̂ operator

is a widening operator and the analysis using this widening always
terminates.

The analysis using the widening gives better precision than the
one using the domain with finite height, for instance, D̂′ = {d̂ ∈
D̂ | |d̂| ≤ k}. The widening approach only restricts the length of
the parse stack at the loop head. In the loop body, it allows arbitrary
length of parse stacks. Let’s consider the following program.

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

Acknowledgments
We thank Kyung-Goo Doh, Hyunha Kim, and David Schmidt for
their willingness to let us build upon their unpublished work. We
thank Yungbum Jung, Hakjoo Oh, Deokhwan Kim, Will Klieber,
and the anonymous referees for their helpful comments and sug-
gestions.

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative
Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-
ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium
on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional
Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings
of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static
Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

[10] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In Proceedings of The ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
238–252, Los Angeles, California, 1977. ACM Press, New York, NY.

[11] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In Proceedings of The ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 269–
282, San Antonio, Texas, 1979. ACM Press, New York, NY.

[12] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal
of Logic and Computation, 2(4):511–547, 1992.

[13] Rowan Davies. A temporal-logic approach to binding-time analysis.
In Proceedings of the Symposium on Logic in Computer Science,
pages 184–195. IEEE Computer Society Press, 1996.

[14] Rowan Davies and Frank Pfenning. A modal analysis of staged
computation. In Proceedings of The ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 258–
270. ACM, 1996.

[15] Rowan Davies and Frank Pfenning. A modal analysis of staged
computation. Journal of the ACM, 48(3):555–604, 2001.

[16] Kyung-Goo Doh, Hyunha Kim, and David Schmidt. Abstract
parsing: static analysis of dynamically generated string out-
put using LR-parsing technology. In Proceeeding of the In-
ternational Static Analysis Symposium, 2009. Available from
http://santos.cis.ksu.edu/schmidt/dohsas09.pdf.

[17] Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. ‘C: a
language for high-level, efficient, and machine-independent dynamic
code generation. In Proceedings of The ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 131–
144, New York, NY, USA, 1996. ACM.

[18] Ik-Soon Kim, Kwangkeun Yi, and Cristiano Calcagno. A poly-
morphic modal type system for lisp-like multi-staged languages. In
Proceedings of The ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 257–269, 2006.

[19] Yasuhiko Minamide. Static approximation of dynamically generated
web pages. In Proceedings of the International Conference on World
Wide Web, pages 432–441, New York, NY, USA, 2005. ACM.

[20] Yasuhiko Minamide and Akihiko Tozawa. Xml validation for
context-free grammars. In Proceedings of the Asian Symposium
on Programming Languages and Systems, pages 357–373. Springer-
Verlag, 2006.

[21] Aleksandar Nanevski. Meta-programming with names and necessity.
In ACM International Conference on Functional Programming, pages
206–217. ACM, October 2002.

[22] Aleksandar Nanevski and Frank Pfenning. Staged computation
with names and necessity. Journal of Functional Programming,
15(6):893–939, 2005.

[23] Morten Rhiger. First-class open and closed code fragments. In
Proceedings of the Symposium on Trends in Functional Programming,
September 2005.

[24] Tim Sheard. Accomplishments and research challenges in meta-
programming. In Proceedings of the International Workshop on
Semantics, Applications, and Implementation of Program Generation,
pages 2–44, London, UK, 2001. Springer-Verlag.

[25] Walid Taha and Michael Florentin Nielsen. Environment classifiers.
In Proceedings of The ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. ACM, 2003.

[26] Gary Wassermann, Carl Gould, Zhendong Su, and Premkumar
Devanbu. Static checking of dynamically generated queries in
database applications. ACM Transactions on Software Engineering
and Methodology, 16(4):14, 2007.

[27] Gary Wassermann and Zhendong Su. Sound and precise analysis
of web applications for injection vulnerabilities. In Proceedings of
the SIGPLAN Conference on Programming Language Design and
Implementation, pages 32–41, New York, NY, USA, 2007. ACM.

